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This paper [1] proved that a decoupled GCN is essentially the same as a two-step label propagation: 1) propagating
the known labels along the graph to generate pseudo-labels for the unlabeled nodes, and 2) training a neural network
predictor on the augmented pseudo-labeled data. Formally, the model is optimized with the following objective function:

L(θ) = `
(
fθ(X), ĀY

)
,

where Ā =
∑
βkÂ

k is determined by the propagation strategy and Y represent the one-hot labels for nodes (initial
labels for unlabeled nodes are zero vectors). Using the cross-entropy loss, we have
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āijyjk

 log fik
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∑
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āij
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yjk log fik

=
∑
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āijCE
(
fi,yj

)
,

where C is the label set and Vl is the set of labeled nodes. The reformulated loss can be interpreted as using node j’s
label to train the node i and weighting the loss with āij . However, the static weight āij maybe unsatisfying and this
paper extends it to a more general framework with flexible weighting strategies:

LPT = L(θ) =
∑

i∈V,j∈Vl

wijCE
(
fi,yj

)
,

where wij = g(f(X), A) represents a general weighting strategy that is controlled by the model prediction and graph
structure with a specific function g.

Lemma 1. Training a decoupled GCN is equivalent to performing Propagation then Training with dynamic weight
wij =

ājifi,h(j)∑
q∈V ājqfq,h(j)

for each pseudo-labeled data (xi,yj), where h(j) means the label ID of node j, i.e., yj,h(j) = 1.

Proof. The lemma can be proved by comparing the gradients of decoupled GCN and PT. The loss of decoupled GCN is

LDGCN = `
(
Āfθ(X), Y

)
= −

∑
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(
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ājifik

)
,
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whose gradient is
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.

Note that the gradients of the PT w.r.t. θ is

∇θLPT =
∑

j∈Vl,i∈V
wij∇θCE

(
fi,yj

)
.

By comparing the two gradients the proof is completed.

From the above lemma, we can see that the weights for each nodes are normalized to be unity, i.e.,
∑
i∈V wij = 1. To

make the model more robust to label noise, this paper remove the normalization of weights to let different labeled data
exert varying impact on model training and propose PTA. The weight without normalization can be written as

wij = ājifi,h(j).

Then the accumulated weight is
Sj =

∑
i∈V

ājifi,h(j).

When fi,h(j) is small, it implies the labels of neighbors of node j are predicted different from h(j), which means the
labeled data may be contaminated by noises. The PTA naturally assigns small weights to this unreliable data and make
the model more robust to label noise. An adaptive weighting strategy is further used to reduce the sensitivity to model
initialization:

wij = ājif
γ
i,h(j), γ = log(1 + e/ε).

PTA gradually enlarges the impact of model prediction on the weighting of pseudo-labeled data to increase the model’s
robustness to noise.
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