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This paper [1] considered the problem of semi-supervised node classification on heterophilic graphs
and graphs with noisy edges. To this end, this paper derived a novel p-Laplacian message passing
scheme from a discrete regularization framework and proposed a new pGNN architecture, which
can be theoretically verified as an approximation of a polynomial graph filter defined on the spectral
domain of the p-Laplacian. They theoretically demonstrate their method works as low-pass and
high-pass filters and thereby applicable to both homophilic and heterophilic graphs.

1 Preliminaries and Background

Definition 1 (Graph Gradient). Given a graph G = (V, E) and a function f : V → R, the graph
gradient is an operator∇ : FV → FE defined by

(∇f) ([i, j]) =

√
Wi,j

Dj,j
f (j)−

√
Wi,j

Di,i
f (i) , ∀ [i, j] ∈ E . (1)

For [i, j] /∈ E , (∇f) ([i, j]) = 0. The graph gradient of a function f at vertex i is defined to be
(∇f) (i) = ((∇f) ([i, 1]) , . . . , (∇f) ([i,N ])) and its Frobenius norm is given by ‖(∇f) (i)‖2 =(∑N

j=1 (∇f)
2

([i, j])
) 1

2

, which measures the variation of f around node i. We measure the variation
of f over the whole graph G by Sp (f) where it is defined to be

Sp (f) =
1

2

N∑
i=1

N∑
j=1

‖(∇f) ([i, j])‖p =
1

2

N∑
i=1

N∑
j=1

∥∥∥∥∥
√
Wi,j

Dj,j
f (j)−

√
Wi,j

Di,i
f (i)

∥∥∥∥∥
p

, for p ≥ 1.

Definition 2 (Graph Divergence). Given a graph G = (V, E) and functions f : V → R, g : E → R,
the graph divergence is computed as

(divg) (i) =

N∑
j=1

√
Wi,j

Di,i
(g ([i, j])− g ([j, i])) . (2)

Definition 3 (Graph p-Laplacian Operator). Given a graph G = (V, E) and a function f : V → R,
the graph p-Laplacian is an operator ∆p : FV → FV defined by

∆pf = −1

2
div
(
‖∇f‖p−2∇f

)
, for p ≥ 1, (3)

where ‖·‖p−2 is element-wise.
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Substituting Eq. (1) and Eq. (2) into Eq. (3), we obtain

(∆pf) (i)

=− 1

2
div
(
‖∇f‖p−2∇f

)
(i) (4)

=− 1

2

N∑
j=1

√
Wi,j

Di,i

((
‖∇f‖p−2∇f

)
([i, j])−

(
‖∇f‖p−2∇f

)
([j, i])

)

=
1

2

N∑
j=1

√
Wi,j

Di,i

(
‖∇f ([j, i])‖p−2

((√
Wi,j

Di,i
f (i)−

√
Wi,j

Dj,j
f (j)

))
− ‖∇f [i, j]‖p−2

(√
Wi,j

Dj,j
f (j)−

√
Wi,j

Di,i
f (i)

))

=

N∑
j=1

√
Wi,j

Di,i

(
‖∇f [j, i]‖p−2

(√
Wi,j

Di,i
f (i)−

√
Wi,j

Dj,j
f (j)

))
. (5)

When p = 2, ∆2 = I−D−1/2WD−1/2 is referred as the ordinary Laplacian operator. When p = 1,
∆1 = − 1

2div
(
‖∇f‖−1∇f

)
is referred as the curvature operator. Note that Laplacian ∆2 is a linear

operator, while in general for p 6= 2, p-Laplacian is nonlinear since ∆p (af) 6= a∆p (f) for a ∈ R.

The graph p-Laplacian is semi-definite:

〈f,∆pf〉 =
1

2

N∑
i=1

N∑
j=1

√
Wi,j

Di,i
‖∇f ([j, i])‖p−2

(√
Wi,j

Di,i
f (i)−

√
Wi,j

Dj,j
f (j)

)
f (i)

− 1

2

N∑
i=1

N∑
j=1

√
Wi,j

Dj,j
‖∇f [j, i]‖p−2

(√
Wi,j

Di,i
f (i)−

√
Wi,j

Dj,j
f (j)

)
f (j)

=
1

2

N∑
i=1

N∑
j=1

‖∇f ([j, i])‖p−2
(√

Wi,j

Di,i

√
Wi,j

Di,i
f (i) f (i) +

√
Wi,j

Dj,j

√
Wi,j

Dj,j
f (j) f (j)− 2

√
Wi,j

Di,i

√
Wi,j

Dj,j
f (i) f (j)

)

=
1

2

N∑
i=1

N∑
j=1

‖∇f ([j, i])‖p−2 ‖∇f ([j, i])‖2

=
1

2

N∑
i=1

N∑
j=1

‖∇f ([i, j])‖p

= Sp (f) ≥ 0.

We also have

∂Sp (f)

∂f
|i =

∂
(∑N

j=1 ‖∇f ([i, j])‖p − ‖∇f ([i, i])‖p
)

∂f (i)

=

∂

(∑N
j=1

∥∥∥√Wi,j

Dj,j
f (j)−

√
Wi,j

Di,i
f (i)

∥∥∥p)
∂f (i)

=

N∑
j=1

p

2

∥∥∥∥∥
√
Wi,j

Dj,j
f (j)−

√
Wi,j

Di,i
f (i)

∥∥∥∥∥
p−2

2

√
Wi,j

Di,i

(√
Wi,j

Di,i
f (i)−

√
Wi,j

Dj,j
f (j)

)
= p (∆pf) (i) .
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2 p-Laplacian Based Graph Neural Networks

The p-Laplacian regularization problem is defined to be

F? = arg min
F
Lp(F) := arg min

F
Sp(F) + µ

N∑
i=1

‖Fi,: −Xi,:‖2 , (6)

where µ ∈ (0,∞). Different choices of p result in different smoothness constraint on the signals.

With p = 2, the p-Laplacian regularization problem has closed-form solution which corresponds to
PPNP.

For p > 1, the gradient of Lp(F) over Fi,: for all i ∈ [N ] is

∂Lp(F)

∂Fi,:
= p

N∑
j=1

Wi,j√
Di,i

∥∥∥∥∥
√
Wi,j

Di,i
Fi,: −

√
Wi,j

Dj,j
Fj,:

∥∥∥∥∥
p−2(

1√
Di,i

Fi,: −
1√
Dj,j

Xi,:

)+
2µ

p
(Fi,: −Xi,:) .

Using gradient descent with stepsize
α

(k)
i,i

p where

α
(k)
i,i = 1/

 N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p

 , ∀i ∈ [N ] ,

M
(k)
i,j = Wi,j

∥∥∥∥∥
√
Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2

, ∀i, j ∈ [N ] ,

and denoting β(k)
i,i = 2µ

p αi,i, ∀i ∈ [N ], then we have

F
(k+1)
i,:

= F
(k)
i,: −

α
(k)
i,i

p

p N∑
j=1

Wi,j√
Di,i

∥∥∥∥∥
√
Wi,j

Di,i
F

(k)
i,: −

√
Wi,j

Dj,j
F

(k)
j,:

∥∥∥∥∥
p−2(

1√
Di,i

F
(k)
i,: −

1√
Dj,j

F
(k)
j,:

)+ 2µ (Fi,: −Xi,:)


= F

(k)
i,: − α

(k)
i,i

N∑
j=1

M
(k)
i,j√
Di,i

(
1√
Di,i

F
(k)
i,: −

1√
Dj,j

F
(k)
j,:

)
− β(k)

i,i (Fi,: −Xi,:)

=

1− α(k)
i,i

N∑
j=1

M
(k)
i,j

Di,i
− β(k)

i,i

F
(k)
i,: + α

(k)
i,i

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: + β

(k)
i,i Xi,:

=

1− α(k)
i,i

 N∑
j=1

M
(k)
i,j

Di,i
+

2µ

p

F
(k)
i,: + α

(k)
i,i

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: + β

(k)
i,i Xi,:

= α
(k)
i,i

N∑
j=1

M
(k)
i,j√

Di,iDj,j

F
(k)
j,: + β

(k)
i,i Xi,:.

Let M(k) ∈ RN×N , α(k) = diag
(
α
(k)
1,1 , . . . , α

(k)
N,N

)
, β(k) = diag

(
β
(k)
1,1 , . . . , β

(k)
N,N

)
, we can

rewrite the above gradient step in matrix form as follows:

F(k+1) = α(k)D−1/2M(k)D−1/2F(k) + β(k)X.

It is easy to see that APPNP is a special case of this message passing scheme with p = 2. The
convergence can be guaranteed with suitable stepsize.

Using this p-Laplacian message passing scheme, the pGNN is defined as follows:

F(0) = ReLU
(
XΘ(1)

)
F(k+1) = α(k)D−1/2M(k)D−1/2F(k) + β(k)F(0), k = 0, . . . ,K − 1,

Z = softmax
(
F(K)Θ(2)

)
.
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Some other theoretical analyses made in the paper such as the upperbound of the risk and the spectral
analysis with p-Laplacian are also interesting.
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