p-Laplacian Based Graph Neural Networks
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This paper [1] considered the problem of semi-supervised node classification on heterophilic graphs
and graphs with noisy edges. To this end, this paper derived a novel p-Laplacian message passing
scheme from a discrete regularization framework and proposed a new PGNN architecture, which
can be theoretically verified as an approximation of a polynomial graph filter defined on the spectral
domain of the p-Laplacian. They theoretically demonstrate their method works as low-pass and
high-pass filters and thereby applicable to both homophilic and heterophilic graphs.

1 Preliminaries and Background

Definition 1 (Graph Gradient). Given a graph G = (V, ) and a function f : V — R, the graph
gradient is an operator V : Fy, — F¢ defined by
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of f over the whole graph G by S, (f) where it is defined to be
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Definition 2 (Graph Divergence). Given a graph G = (V,€) and functions f : V = R, g: & = R,
the graph divergence is computed as
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Definition 3 (Graph p-Laplacian Operator). Given a graph G = (V, ) and a function f : V — R,
the graph p-Laplacian is an operator A, : Fy, — Fy defined by

1 _
Apf = ~5div (IV7IP2 ), forp>1, 3)

where ||-||”~? is element-wise.
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Substituting Eq. (T) and Eq. (@) into Eq. (3), we obtain
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When p = 2, Ay = I — D~ /2WD~1/2 is referred as the ordinary Laplacian operator. When p = 1,

Ay = —3div (||V fll lvf ) is referred as the curvature operator. Note that Laplacian A, is a linear
operator, while in general for p # 2, p-Laplacian is nonlinear since A, (af) # aA, (f) fora € R.
The graph p-Laplacian is semi-definite:
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2 p-Laplacian Based Graph Neural Networks

The p-Laplacian regularization problem is defined to be

F* = argminl,(F) := arg minS,(F) + p Z I|F; .
F
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where p € (0, 00). Different choices of p result in different smoothness constraint on the signals.

With p = 2, the p-Laplacian regularization problem has closed-form solution which corresponds to

PPNP.
For p > 1, the gradient of £,(F) over F; , for all i € [N] i
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Using gradient descent with stepsize —=- where
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Let M%) ¢ RV*N_ o) = diag (ag) 5\];7)]\;), Br = diag( §k1)77 ](\I;)N

rewrite the above gradient step in matrix form as follows:
FE+D) — o D12 —1/2R((F) ,B(k)X

), we can

It is easy to see that APPNP is a special case of this message passing scheme with p = 2. The

convergence can be guaranteed with suitable stepsize.
Using this p-Laplacian message passing scheme, the PGNN is defined as follows:
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Some other theoretical analyses made in the paper such as the upperbound of the risk and the spectral
analysis with p-Laplacian are also interesting.
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