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This paper [[L] proposed a Dirichlet energy constrained principle to show the importance of regularizing the Dirichlet
energy at each layer within reasonable lower and upper limits. Given a node embedding matrix X (*), the Dirichlet
energy is defined as follows:
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Lemma 1. The Dirichlet energy at the k-th layer is bounded as follows:

0< E(X®) < sl B (x¢),
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where sfﬁx is the squares of the maximum singular values of W ). Note that to simplify the derivation process, the

non-linear activations are neglected.

The Dirichlet energy constrained learning defines the lower and upper limits at layer & as
eninE (XFD) < B (X)) < 0B (XO)

with ¢pin € (0, 1) and ¢pax € (0, 1]. Instead of directly constrain the Dirichlet energy in GNN training, an efficient
model EGNN is proposed to satisfy the constrained learning from three perspectives: weight controlling, residual
connection and activation function.

To satisfy the upper limits of Dirichlet energy, weight W () is initialized as \/crnax] and the other weight matrices are
initialized as I. To make sure the constraint is satisfied during model training, two regularization terms are added to

the loss, that is, HW(” — 1/cmaxIHF + Zszg HW("') — IHF To satisfy the lower limits of Dirichlet energy, residual
graph convolution is used:

XW =4 ([(1 — Comin) AX®D 4 ax kD 4 5X<0>} W<k>) ,

where o + 8 = cpin. However, the use of ReLU may violate the lower limit as it decreases the Dirichlet energy.
Therefore, a shifted ReLU is applied:
o (X(k)> = max (b,X(k)) ,

where b is a trainable shift.
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