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This paper [1] proposed a Dirichlet energy constrained principle to show the importance of regularizing the Dirichlet
energy at each layer within reasonable lower and upper limits. Given a node embedding matrix X(k), the Dirichlet
energy is defined as follows:
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Lemma 1. The Dirichlet energy at the k-th layer is bounded as follows:
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where s(k)max is the squares of the maximum singular values of W (k). Note that to simplify the derivation process, the
non-linear activations are neglected.

The Dirichlet energy constrained learning defines the lower and upper limits at layer k as
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with cmin ∈ (0, 1) and cmax ∈ (0, 1]. Instead of directly constrain the Dirichlet energy in GNN training, an efficient
model EGNN is proposed to satisfy the constrained learning from three perspectives: weight controlling, residual
connection and activation function.

To satisfy the upper limits of Dirichlet energy, weight W (1) is initialized as
√
cmaxI and the other weight matrices are

initialized as I . To make sure the constraint is satisfied during model training, two regularization terms are added to
the loss, that is,
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. To satisfy the lower limits of Dirichlet energy, residual
graph convolution is used:
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where α + β = cmin. However, the use of ReLU may violate the lower limit as it decreases the Dirichlet energy.
Therefore, a shifted ReLU is applied:
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where b is a trainable shift.
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